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NOTE

Numerical Evidence of Feigenbaum’s Number &
in Non-{inear Oscillations

1. INTRODUCTION

Chaotic behaviour and strange attractors in non-linear
dynamics today are very intensively studied [1-37. In
practice, these new concepts arise especially in non-linear
oscillations. Among many features, Feigenbaum’s universal
numbers [4] in relation to period-doubling bifurcations
play a very important role in the study of a dynamical
system on the route to chaos. Numerical methods for the
computation of periodic solutions and period doubling
bifurcations have been described in [5, 6].

Huberman and Crutchfield 7] and other authors
[8-10] investigated the non-linear dynamics of particles
in anharmonic potentials in the presence of an external peri-
odic field. The equation of motion for the charge is given by

2.
Lx s

4y =
B d{+x 4x” =0.115 cos 1.

(1.1)

The non-linear characteristic is of the soft spring type and
represented by a cubic term. A sequence of period doubling
bifurcations has been noted when the forcing frequency 2 is
close to 0.53. Raty et al. [8] found some estimates for the
universal numbers to two decimal digits.

Recently, Thompson [11] studied the escape from a
potential well. The differential equation which describes the
motion of the particle is

dxd
01 S X = Fsin08s:,

dt dr (12)

the non-linearity being quadratic this time. A cascade of
period doubling bifurcations has been found where the
specific parameter now is the amplitude F of the periodic
excitation. Transition to chaos occurs at a value of F close
to 0.109.

The aim of this paper is to compute, to a very high preci-
sion, the transition values of the specific parameter at which
period-doubling bifurcations take place. The suggested
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iterative technigue uses the classical shooting method. The
resulting non-linear equations are solved by the Newton
method. The bifurcations are related to subharmonic solu-
tions of the given system having the periods 2P, 4P, 8P, ..,
where P represents the period of the forcing term of the
system. If p,, where i=1, 2, 4, 8, .., denote the subsequent
transition values, the Feigenbaum sequence deals with the
sequence of the ratios Ap;/dp,,;, where Ap, = p,— p,;. In the
limit we obtain Feigenbaum’s number

5= tim 221 466920..

(1.3)
imeo APy,
2. THE ALGORITHM
We consider a periodic differential system written as
dx
—=X(x, ¢ .
4= X ), (2.1)

where x and X are vectors of the same dimension. X has
period P with respect to r and depends on some system
parameter p. The period T of a subharmonic solution of
(2.1) will be an integer multiple of P. Take some value of x,
say x,, as the initial point of the process related to time
¢ = 0. This choice will be enlightened further in the sequel.
We consider the image f(x;) of the point x;, which is
obtained by integrating numerically the system (2.1) with
initial value x,. Hereby the solution x({t, x,) is evaluated at
the end of the period T. Thus, we have

Slxg)=x(T, x,). (2.2)

We wish to find a periodic solution which is represented by
a closed orbit, Therefore, we must determine a fixed point
x* of the map S

x* = fix*) (2.3)
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Let x, be an approximation to x*. Define the correction
vector as

Axg=x* - x,, (24)
and the error at the end of the integration as
ro= f(Xq) = X, (2.5)

By linearizing (2.3) with respect to x, it is readily obtained
that the correction vector satisfies

[1—A(T)] dxy=r,, (2.6)

where [ is the identity matrix. The matrix A(1) is the
fundamental matrix of the system of the first variational
equations with respect to the reference solution x(s, x;)
derived from (2.1), i.e,

dy 0X

i [x(t>x0)5 t] ¥

dt - dx 27

Note from (2.6) that we must compute the fundamental
matrix at the end of the period 7. In practice, the numerical
integration of {2.7) is performed simultaneousty with that of
the given system (2.1). The initial condition hereby is
A0 =1

Now the integration rule must be chosen very carefully.
From several numerical experiments it has been found that
the use of the fourth-order Runge-Kutta method does not
allow us to find the transition values of the specific
parameter for the high periods in the period doubling
cascade. Therefore, we suggest to make use of the Runge-
Kutta—Hiita method [12] which is a sixth-order eight-stage
method showing very high accuracy. If 4 denotes the step
length, the scheme is given by

h
= x, +—— (41k, + 216k, + 27k,

Tt 840
+ 272k s+ 27k s + 216k + 41ky), {2.8)
where
kl = X[xn’ [n]!

ky=X[x,+5hk,, 1, +5h],
ky= XX, 4 35 h(k, + 3k,), 1, + L #],
ky=X[x,+ Lhik, — 3k, +8k3), 1, + 1 h],
ks=X[x,+ s h(—5k,+ 27k,

— 24k, +6k,), 1, + 5 H],
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(2.9)
ko= X[x,+ 5 h(221k, — 981k, + 867k,

— 102k, + k), ¢, + 2 R],

ky=X[x,+ 3 h(— 183k, + 678k, — 472k,
— 66k, + 80k s + 3kg), 1, + 3 ],

k= X[x,+ & h{716k, — 2079k, + 1002k,
+ 834k, — 454k — Yk + T2k,), £, + H].

Runge-Kutta methods of still higher order or even
predictor-corrector methods may be chosen if necessary.
This was not the case for the examples treated in the sequel.

We now return to the process defined by (2.6) which will
be applied in an iterative manner, At cach stage we must
solve a linear system for the corrections 4x, using any
classical method in numerical analysis, The iterative method
1s stopped if '4x,] is sufficiently smail. At each step in the
iterative process the ameliorated value for x is now obtained
from its previous value. In this way we obtain the closed
orbit representing the periodic solution with the relevant
period. The suggested iterative technique is based on the
Newton method for solving non-linear equations. It is to be
mentioned that the basic principles of the algorithm for
the non-autonomous system (2.1) are the same as those
described in Section | in [6]. Let us emphasize that
P. Deuflhard [6] also develops a new Gauss—Newton algo-
rithm for autonomous non-linear systems and a multiple
shooting technique for dealing with special cases such as
unstable periodic orbits or highly non-linear systems. These
methods converge locally and quadratically. As is well
known the subsequent transitions in the cascade of period
doubling bifurcations occur as flip transitions. These are
obtained as the transitions through the value — 1 for one of
the eigenvaiues of A(T). This is now a simple problem of
polynomial interpolation in numerical analysis. Since the
increments of the specific parameter are taken small in this
continuation process, it is sufficient to choose a polynomial
of low degree.

The whole procedure may now be described as follows.
We take some value of the system parameter p for which
there exists a 1P solution. Starting with an initial choice x,
in the domain of attraction for the 1 P solution we construct
this periodic solution by solving (2.6) iteratively and we
compute the eigenvalues of the matrix A. By taking values
of the parameter p at regular small increments a continua-
tion procedure is established for the 1P solution whereby
each time {2.6) is solved and the eigenvalues of 4 are com-
puted. As the starting value for x we take the solution
obtained from solving (2.6) for the case with the last chosen
value of the parameter p. The interpolation process related
to the passage through the value —1 for one of the eigen-
values of 4 then determines the value of the parameter p at
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which the transition from the 1P solution to the 2P solution
takes place.

Next we consider a value of the parameter p slightly
beyond this transition value in the relevant domain of the
2P solution. In a simiiar way the continuation process for
the 2P solution is performed and the value of p for the tran-
sition 2P — 4P is computed from the interpolation process.
The whole procedure now consists in repeating this process
for ali further desired transitions 4P — 8P — 16FP — 32P —
64P - ...

3. NUMERICAL RESULTS

Non-linear Oscillator with Cubic Term
With x, = x, x, =%, (1.1} may be replaced by the system
')-Cl =X3,

(3.1)
Xy= —x;+4x]—04x,+0.115 cos 1.

The first variational equations for this system with respect
to the reference solution x,(r), x,(¢) are

Yi= Y2,

(3.2)
Ja=(—=1412x3} y, - 04y,.

We must calculate two solutions of (3.2) with initial
conditions y,=1, y,=0, and y,=0, y,=1, respectively.

Therefore, we perform simultaneously the numerical
integration of the sixth-order system

¥ =x,,

Xy= —x,+4x3 ~04x,+ 0.115 cos 1,

323:x4, .
R {3.3)
Xo=(—1+12x7) x;— 0.dx,,
X5=x6;
Xe=(—1412x7) xs—0.4x,,
with the initial conditions at 1 =0:
X3 =Xy, Xa=Xy, X3=1, (34)
x,; =0, xs=0, xe=1

Here the eigenvalues of A{T) satisfy a quadratic equation.
Let us now study the occurrence of period doubling bifur-
cations and derive the corresponding Feigenbaum number.
Let Q,, where i=1, 2, 4, 8, ..., denote the value of the forcing
frequency at which the transition takes place from a stable
pericdic solution with the period 7P to an unstable periodic
solution having the same period. At this Q, value one of the
eigenvalues of the fundamental matrix 4(iP) passes through
the value — 1 and a new periodic solution is created with the
period doubled T'=2iP. This new 2i{P periodic solution

TABLE I

The continuation process of the 1 P solution for the cubic term case

0.5372 0.006499784553 0.346556162311 0.950837 E-2 0.977372 b
0.5366 0.027738000952 0.342148345222 0.103635 E-1 0.892048 S
0.5360 0.039606259922 0.339097280182 0.125181 E-1 0.734649 S
0.5354 0.048162857953 (.336638752475 0.159799 E-1 0.572482 )
0.5348 0.055189321103 0.334457442699 0.225428 E-1 0.403683 S
0.5342 0.061281344923 0.332447534675 0.413219 E-1 0.219066 S
0.5336 0.066725980605 0.330557842780 0.045439 0.045439 §
-0.083305 1 +0.083305 1
0.5330 0.071687793585 0.328758908377 -0.041190 - 0.041150 S
-0.085207 i +(}.085207 i
0.5324 0.076271551668 0.327031901568 -0.407332 E-1 -0.218725 S
0.5318 0.080548849547 0.325363901033 -0.211353 E-1 - 0.419302 b
0.5312 0.084571188412 0.323745571984 -0.144278 E-} - 0.610966 5
0.5306 0.088377087499 0.322169901858 -0.109121 E-1 - 0.803496 5
0.5300 0.091996252845 0.320631458142 -0.873116 E-2 - 0.958811 )
0.5294 0.095452167632 0.319125926536 -0.724240 E-2 - 1.197698 U
0.5288 0.098763778494 0.317649809865 -0.616032 E-2 - 1.400469 u
0.5282 0.101946635922 0.316200224155 -0.533861 E-2 - 1.607377 U

S81/105/1-12
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"TABLE 1l

The continuation process of the 47 solution for the cubic term case

Q X190 X320 51 S2 5 =stable
U = unstable
0.528600 0.t14615881255 0.309678295883 0.575892 E-8 0.954990 5
0.528575 0.115293259722 0.309318554720 0.690260 E-8 0.795970 S
0.528550 0.115749391666 0.309076597773 0.865041 E-8 (1.634803 5
0.528525 0.116127663967 0.308876011602 0.116367 E-7 0.471457 S
0.528500 0.116461927077 0.308698769932 0.179182 E-7 (.305897 S
(.528475 0.116766789162 0.308537008536 0.396623 E-7 0.138090 5
0.528450 0.117050157405 0.308386791938 -0.171020 E-6 -0.031999 S
0.528425 0.117316891232 0.308245267213 -0.267457 E-7 -0.204403 S
0.528400 0.117570233980 (.308110801456 -0.144031 E-7 -0.379159 S
0.528375 0.117812480184 0.307982176494 -(1080979 E-R -0.556301 S
0.528350 0.118045325332 0.307858492718 -0.740955 E-8 -0.735864 5
0.528325 0.118270065312 0.307739062542 -0.593476 E-8 -0.917884 S
0.528300 0.1184877174388 0.307623347972 <0.493442 E-8 -1.102396 U
0.528275 0.118699098565 0.307510915210 -0.421795 E-8 -1.289437 U
0.528250 0.118904876210 0.307401411196 -0.367723 E-8 -1.479043 U

appears to be stable since both eigenvalues of 4(2iP) are in
modulus smaller than 1.

We carried out the calculations on CDC CYBER 180/855
using single precision. The periods of interest are T= P, 2P,
4P, 8P, 16P, and 32P, where P is the fundamental period
of the excitation term, ie., P=27/02. From numerical
experiments the iterative process derived from (2.6) was
stopped if |Axo/ < 107" and the step length 4 has been
adapted accordingly.

In Tables I and IT the continuation procedure is
illustrated for, e.g., the 1 P and the 4P solutions respectively
when the forcing frequency €2 is slightly varied in the rele-
vant domain of interest. The creation of such soiutions
occurs at s,=1 and the transition to the next period-
doubled solution takes place at s,= —1.

In Table IIT we show the results for the transition values
0, of the forcing frequency and the initial conditions x 5, X4
for the relevant periodic solution in the phase plane. The
passage through the value —1 for one of the eigenvalues of
the fundamental matrix A(iP) has been determined by the
interpolation method mentioned at the end of Section 2 to
six-digit accuracy. Note from Tables I and II that the
1P — 2P and the 4P — 8P transitions occur at £2 = 0.53 and
£2 % 0.52831, respectively. Therefore, only a few additional
smaller increments of the parameter £ have been considered
in the vicinity of these values. The finai transition values for
€ are given to 15 digits to show the numerical convergence
for Feigenbaum’s number ¢ in the sequel.

We note from Table 111 that the transition values €, tend
to a limit value. It has been noted that at the last transition
from T=32P to T'=064P some precision is lost for the
eigenvalue which passes through the value —1.

We now evaluate the ratios of the differences 4Q./40Q,,,
where 4Q2,=0Q,—Q,.. For the first four values of the
Feigenbaum sequence we obtain

5, =4.73672,
5, =4.67939,
_ (3.5)
8, =4.67136,
5. =4.66902.

This illusirates the numerical convergence to the Feigen-
baum number § = 4.66920. We note that 5, shows an agree-
ment of three decimal digits. For comparison, Rity er al.
[ 8] mention the numerical value 4.8 as an estimate for d,.
We should like to mention that the bifurcation tree in the
amplitude versus forcing frequency representation has been
given in [8] and therefore is not repeated here,

TABLE III

The transition values £2, and the initial conditions xp, X239
for the cubic term case

T Q; X10 Xap
P 0.529996440141057 0.092017217842 0.320622432432
2P (.528607137070022 0.114062603600 0.309972874701
4P 0.528313831893278 0.118368119094 0.307686939068
8P 0.528251151712799 0.118194538377 0.307791604975
16P 0.528237733744171 0.113111963795 0.310534865395
32p (1.528234859914082 0.118034962355 0.307881539437
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Non-linear Oscillator with Quadratic Term

For the problem of the escape from a potential well we
must integrate the sixth-order system

X =X,,
¥p2= —x; 4+ x7 —0.1x, + Fsin 0.85/,

X=Xy,
(3.6)
X=(2x, — 1) x,—0.1x,,

X5 = Xg,

Xe=(2x; — D) xs— 0.1xg.

The relevant parameter is now the amplitude F of the exter-
nal periodic term. The fundarnental period takes a fixed
value P =2r/0.85. The transitions P—2P - 4P - 8P —
16P — 32P — 64 P have been studied.

The whole continuation process in the quadratic term
case 1s similar to that for the cubic term case and therefore
its complete tabular material is not reported for conciseness.
Table IV gives the transition values F; and the initial condi-
tions x4 and x,,. The required precision was 12-digit
accuracy for the iterative process from (2.6} to determine
X4, X0 and 9-digit accuracy for the interpolation method
to derive the passage through the value —1 for one of the
cigenvaiues of A(7P). For comparison, it is mentioned in
[11] that the first transitions take place at F, = 0.1005 and
F,=0.1073. Thus the results are in excellent agreement.
From Table IV the first four values in the Feigenbaum
sequence are found to be

§,=6.64186,
8, = 5.06899,
(3.7)
5, =4.67802,
84 = 4.66646.

Again the numerical convergence to Feigenbaum’s number
is obvious. However, compared to the previous example,
it is slightly slower. We see that J, is an approximation
to Feigenbaum’s universal number ¢ with an error of
2.8x1077

In conclusion, these two examples on non-linear
oscillations illustrate clearly that the suggested method
based on the classical shooting method, in conjunction with
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TABLE 1V
The transition values F; and the initial conditions x,,, X2
for the quadratic term case

T Fi Xig X20
P 0.100501010277272 -0.049299702056 -0.560867549711
2p 0.107356413074772 A0,217975510147 -0.475117758267
4p 0.108388563993247 -0.188776363276 -0.5020184691 14
8P 0.108592184619793 -0.201691485174 -0.491789268742
16P 0.10R63571 1748362 -0.197082998579 -0.495716936092
32P 0.108645039409791 -0.199020470917 -0.494119373771

the Newton method for solving the resulting non-linear
equations, is very efficient to compute period-doubled
solutions and its related Feigenbaum number.
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